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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 22, No. 1, February, 1981

 ON OPTIMAL ECONOMIC GROWTH WITH CHANGING

 TECHNOLOGY AND TASTES: CHARACTERIZATION

 AND STABILITY RESULTS*

 BY TAPAN MITRA AND ITZHAK ZILCHA1

 1. INTRODUCTION

 In this paper, we consider a framework of optimal growth, in which technology

 and tastes are changing over time. The model is an aggregative one, and follows

 closely those studied by Brock [1971] and Brock and Gale [1969].

 In this framework, we address two important issues in the area of optimal

 intertemporal allocation of resources. First, we provide "price characterizations"

 of weakly maximal and optimal programs. (Weak-maximality and Optimality

 are defined, following the approach of Brock [1970] and Gale [1967] respectively,

 in Section 2). Second, we provide "asymptotic stability properties" of weakly-

 maximal and optimal programs.

 Price characterizations are of importance since they imply that socially desirable

 allocations can be attained by decentralized maximizing decision making of firms
 and consumers,2 (the decentralization being accomplished through a price-
 system), provided an appropriate additional condition on asymptotic behavior of

 input-values3 is satisfied. In the literature, it is this "additional condition"
 which has not been precisely characterized in a model with changing technology

 and tastes. To find this additional condition, we have found it useful to draw on
 the results obtained in the theory of efficient allocation of resources, which deals
 with a similar problem of price characterization of efficient programs. For

 weakly-maximal programs the appropriate condition is that the reciprocal of the

 input-values should not be summable (Theorem 3.1). For optimal programs,
 the input-values should be uniformly bounded (Theorems 4.1 and 4.2). The re-
 sults of Brock [1971], and Benveniste and Gale [1975] are particularly important
 in obtaining these results.

 It should be noted that criteria for the existence of optimal programs in various

 particular cases of our framework have been given by Mirrlees [1967], Phelps
 [1966], and Inagaki [1970]. A unified elegant treatment of this question is given
 in Brock and Gale [1969]. Consequently, we do not address this issue in our

 paper.

 The asymptotic stability properties of weakly-maximal and optimal programs

 * Manuscript received July 23, 1979; revised January 9, 1980.

 1 This research was conducted during the author's visit to Cornell University during the sum-

 mers of 1978 and 1979 and was partially supported by the National Science Foundation.

 2 These concepts are precisely captured by the inequalities (2.5) and (2.6) of Section 2.

 3 For a definition of this concept, see Section 2.
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 222 T. MITRA AND I. ZILCHA

 are important as they show that the optimal actions in the long-run are invariant

 with respect to the initial conditions of the economy (often called the "turnpike

 property"). Roughly speaking, our result (Theorem 5.1) shows that weakly-

 maximal programs exhibit "relative-stability", i.e., the ratio of the input levels of

 any two weakly-maximal programs converge to unity.4 It will be noted that this

 is a generalization of the result usually proved, where input levels along any

 feasible program are uniformly bounded above. In that case, our result implies

 that the input-levels of any two weakly-maximal programs converge to each other.

 We also provide a "value turnpike result," which shows that given any two
 optimal programs, with associated competitive prices, the value of the difference
 in input levels (calculated at the prices of either program) converges to zero.5

 The paper is organized as follows. The model is presented in Section 2.

 Characterization results of weakly-maximal and optimal programs are obtained

 in Sections 3 and 4 respectively. Asymptotic stability results of such programs

 are presented in Section 5. Remarks at the end of Sections 4 and 5 relate our

 results to those in the existing literature.

 2. THE MODEL

 2.1. Production. We consider an aggregative model, with changing tech-

 nology, specified by a sequence of production functions, ft (where t=0, 1, 2, 3,
 ...), from R, to itself. Given a nonnegative input, x, in period t, it is possible to
 produce an output, y, in period (t + 1), where y =ft(x).

 The following assumptions on ft are used in the paper:

 (F.1) For t> O, ft(O) = O

 (F.2) For t>0, ft is increasing for x20.

 (F.3) For t>0, f, is concave for x?0.

 (F.4) For t >0, f, is differentiable for x >0.

 We define a feasible production program from x>0, as a sequence <x, y>
 = <xt, Yt +> satisfying

 (2.1) xo=x, 0 < xt < yt for t ? 1, yt+1=ft(xt) for t > O.

 The consumption program <c> = <ct>, generated by <x, y> is given by

 (2.2) ct=yt-xt(? 0) for t > 1.

 We will refer to <x, y, c> as a feasible program, it being understood that
 <x, y> is a production program, and <c> the corresponding consumption program.

 A feasible program <x, y, c> from x dominates a feasible program <x*, y*,
 c*> from x, if ct ?C* for t21, and ct> C* for some t. A feasible program <x*,

 I See also Corollary 5.1.
 I For a precise statement, see Theorem 5.2.
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 OPTIMAL ECONOMIC GROWTH 223

 y*, c*> from x is said to be inefcient if some feasible program from x domi-
 nates it. An efficient program is a feasible program which is not inefficient.

 A feasible program <x, y, c> from x>0 is called interior if xt>0 for t>0;
 it is called regular interior if ct>0 for t> 1. For an interior program <x, y, c>,
 we denote by 7rt the expression Hft-I(xf ) for t>l, and by rt the expression
 (1/t) for t > 1.

 2.2. Preferences. The preferences of the planner will be represented by a
 seqtuence of utility functions, uti (where t=1, 2,...), from R+ to R. The following
 assumptions on u will be used in the paper:

 (U.1) For t2 1, ut(c) is strictly increasing for c>0.
 (U.2) For t 2 1, ut(c) is continuous for c ?0, differentiable for c >0.
 (U.3) For t ? 1, ut(c) is concave for c > 0; also c' > c > 0 implies u (c') < u (c).
 (U.4) For t21, u'(c)-*oo as c--0.

 Following Brock [1970], a feasible program <x*, y*, c*> from x> 0, is weakly-
 maximal if

 T

 (2.3) lim inft [ut(ct) - ut(ct*)] < 0
 T-*oo t__

 for every feasible program <x, y, c> from x.
 Similarly, following Gale [1967], a feasible program <x*, y*, c*> from x>0,

 is optimal if

 T

 (2.4) lim sup L [ut(ct) - ut(c*)] < 0
 T-Wo t=1

 for every feasible program <x, y, c> from x.
 A feasible program <x*, y*, c*> from x>0, is called competitive if there is

 a sequence <p*> = <p*> of positive prices, such that

 (2.5) ut(ct*) - pt*ct* > u(c) pc, c > 0 t > 1

 (2.6) P+ly*+ - pt*xt* > P*+1Y - p*x, x> 0, Y =ft(x), t > 0.

 A sequence <p*> =<p*>, associated with a competitive program <x*, y*, c*>
 for which (2.5) and (2.6) hold, is called a sequence of competitive prices: (2.5)
 and (2.6) are called competitive conditions.

 Associated with a competitive program <x*, y*, c*> from x?0, is a sequence
 of input values <v*> - <v*> given by

 (2.7) v'* = p*x* for t ? 0.

 A regular interior program <x, y, c> from x> 0, is called an Euler program if

 (2.8) u(ct)- ut+ 1(ct+1)ft(xt) for t ? 1.

 Equations (2.8) are called Euler conditions.
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 224 T. MITRA AND I. ZILCHA

 Associated with any feasible program <x, y, c> from x >0, is a sequence of
 consumption ratios <z> = <z,> given, for t > 1, by

 (2.9) zt=(CtIyt) if Yt > 0; zt = 0 if Yt = 0

 A nonnegative sequence w = <wt> is said to be bounded away from zero if
 inf,?,Owv>O; it is bounded above if supt>O w,<o. It is summable if Y =0wt
 < o0.

 3. CHARACTERIZATION OF WEAKLY-MAXIMAL PROGRAMS

 In this section, we will establish the following characterization of weakly-
 maximal programs. A feasible program is weakly maximal if and only if (a) it is
 competitive, and (b) the reciprocals of the input values associated with the program,
 are not summable.

 For this purpose, we will need an additional assumption on the production

 functions, ft.

 (F.5) For t 05, ft is twice differentiable for x >O; also, there a repositive numbers
 q, Q, Q, such that for t>0, and x>0

 [xft(x)]1ft(x) > q; Q < {[-f'"(x)]x1f'(x)} <!~ Q.

 Several remarks are in order regarding (F.5). First, this is a uniformity as-

 sumption concerning the "elasticities" of ft (see Benveniste and Gale [1975] for
 further discussion of this niotion). We can interpret xf'(x) as capital's share and
 -f"(x)x/f'(x) as a measure of the degree of concavity. Also note that (F.5)
 implies (F.3) and (F.4). Second, given (F.1), (F.2) and (F.5), we have for t20,
 and x > 0, (by concavity of ft, and ft(0) = 0,)

 (3.1) -ft(x) = ft() -ft(x) f f t(x) x)

 so that (since ft(x) > 0 by (F.2)),

 (3.2) [f(x)x]/ft(x) < 1.

 Third, under (F.1), (F.2), and (F.5), we have, using (3.2),

 (33) [-f'(X)] X2 - [-f 't(x)]x ft(x)x <
 ft(x) ft(X) f(X) -

 And, using (F.5), we have

 (3.4) [-f,'(X)]X2 - [-f,'(x)]x f,(x)x > Qq
 ft(x) f t(x) ft (x) -

 The inequalities (3.2), (3.3), (3.4) establish that, under (F.1), (F.2), (F.5), Assump-
 tion E of Benveniste and Gale [1975] is satisfied. This enables us to use their
 result on the characterization of inefficient programs, when technology is changinlg
 [1975, Efficiency Theorem, p. 232]. We state this here, for ready reference.
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 LEMMA 3.1 (Benveniste and Gale). Under (F.1), (F.2) and (F.5), a feasible

 program <x, y, c> is inefficient if and only if

 (3.5) rtxt > 0 for t 2 0, and E (l/rtxt) < 00.
 t=l

 Another result, which is useful in our characterization result, relates efficiency

 and the Euler conditions to the concept of weak maximality, and is due to Brock
 [1971].

 LEMMA 3.2 (Brock). Under (F.1)-(F.4), (U.1)-(U.4), a regular interior pro-

 gram <x, y, c>, which satisfies the Euler conditions, and is efficient, is weakly-
 maximal.

 We will now state and prove our characterization result.

 THEOREM 3.1. Under (F.1), (F.2), (F.5), (U.1)-(U.4), a feasible program

 <x*, y*, c*> from x>O, is weakly maximal, if and only if there is a sequence
 <p*> of positive numbers such that

 (3.6) u,(c*) - p*c* > u,(c) - p*c for c 2 0, t ? I
 (3.7) p* ly*yI - p*x* > p*+1y - p*x for x 2 0, y = f,(x), t 2 0

 T

 (3.8) pt*xt* > 0 for t 0 O, and , (1/p*x*) -- 0oo as T 00.
 t=O

 PROOF. (Necessity) Suppose a feasible program <x*, y*, c*> from x is
 weakly-maximal. Then, for each t ? 1, the expression

 ut[ft-(x* l) - X] + u,+1[,f,(x) - x*+1]

 must be a maximum at x - x*. By (U.4), the maximum must be at an interior
 point, that is c*>0 for t21. Hence, by (F.1), x*>0 for t>0, and

 (3.9) ut(ct*)(- 1) + ut+1(ct*+1)ft(xt) = 0.

 By transposition of terms in (3.9),

 (3.10) u't(ct*) - ut+1(ct*+1)ft(x4t) for t ? 1.

 Define

 PO 'U (c *1) fo(xO*)

 1p*tut(c*) for t>1.

 Note that p* >0 for t ?0. Using (U.2) and (U.3), we have, for x ?0, and t> 1,

 ut(c) - ut(ct*) ut(ct*) (c - ct*) = pt*(C - ct*).

 Hence, by transposition, we obtain (3.6). Similarly, using (F.3) and (F.4), we

 have for x > 0, y =ft(x), and t> 0,
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 226 T. MITRA AND I. ZILCHA

 ft(x) -ft(x*) <f't(xt*)(x - X*) - (x- xt*)

 by (3.10) and (3.11). Hence, by transposition, we obtain (3.7).

 Since <x*, y*, c*> is weakly-maximal, it is efficient. Since xt*>O for t>0,
 so r*xt* >0 for t? 1. Hence, by Lemma 3.1,

 (3.12) E (Ilr-*x*) > oo as T 00.
 t=l

 Using (3.10) repeatedly, we have for T>2,

 (3.13) u(cl) = ut(cr) Hf'(4)
 t=l

 Using (3.11) and (3.13), we clearly have

 (3.14) p*r* = p* for t > 1.

 Using (3.1t4) in (3.12), we have (3.8), which completes the necessity part.

 (Sufficiency) Suppose a feasible program <x*, y*, c*> from x, satisfies (3.6),
 (3.7) and (3.8). Then, by using (U.4) in (3.6), c*>0 for t2 1. The inequality

 in (3.6) states that [ut(c) - p*c] is maximized at c = c*. Since c* >0, so

 (3.15) ut(ct*) -Pt* = 0 for t ? 1.

 The inequality (3.7) says that [p*+ jft(x)-p *x] is maximized at x=x *. Since
 xt*>0 by (3.8), so

 (3.16) Pt*+1f(xt*)- = 0 for t 2 0.

 From (3.15) and (3.16), we have, for t>1,

 (3.17) ut(ct*) = Pt = pt*+ Ift(x*) = (U't+ ct*+1)ft(xt)

 Hence, <x*, y*, c*> is a Euler program.
 By (3.17), we have for T>2,

 T-1

 (3.18) u'(c*) = u'T(cT) H f t((xt*)
 t=1

 Using (3.15), (3 16) and (3.18),

 (3.19) p*r* = p* for t > 0.
 Using (3.19) in (3.8), we have

 T

 (3.20) r*x* > 0 for t > 0, and E(1/r*x*) > oo as T > oo.

 Using Lemma 3.1, and (3.20), <x*, y*, c*> is efficient. Noting that <x*, y*, c*>
 is an efficient Euler program, and using Lemma 3.2, <x*, y*, c*> is weakly-maxi-
 mal. This completes the sufficiency part of the proof.
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 4. CHARACTERIZATION OF OPTIMAL PROGRAMS

 In this section, we will characterize optimal programs by (a) the competitive
 conditions, and (b) the input value boundedness condition.

 It should be noted that the assumptions used for the sufficiency part of the
 theorem (in addition to the basic ones, namely, (F.1)-(F.4), (U.1)-(U.4)) are
 somewhat different from those used for the necessity part. So we have preferred
 to state the two parts of the result separately.

 For the sufficiency part, we need uniform concavity relative to x of the produc-
 tion functions. Hence, we make the following weaker version of (F.5):
 (F.5-) For t ?O,f is twice differentiable for x>0; also, there is a positive number

 Q, such that for t > 0, and x > 0

 Q < I[-f 'XX)]X1f tXX).

 We use (F.5-) to establish a result, which is essentially a modification of Radner's
 "value-loss lemma" (Radner [1961, p. 102]).

 LEMMA4.1. Under (F.1), (F.2), (F.5-), given e>0, if x, x' satisfy (i) x>O,
 x'>20O, and (ii) (x-x')?ex, then

 (4.1) L ft(x) - t(x) j - (x - X') ? 4 Qs(x - x')

 for all t>0.6

 PROOF. By Taylor's expansion, we have, for t?0,

 ft(x') -ft(x) =f(x)[x' - x] + 2 f"(h)(x' -X)2 t ~2 t

 where x ? h > x'. This means that

 ft((x) -ft(x') - (x - x') 2 [-__t'(h)](x-x'
 (4.2) f 'tf(x) f t(x)
 Since x ? h ? x', so f t(x) < f '(h), and

 [-f"(h)](x - X)2 2 [-f' '(h)](x - x')2
 2 _ _ _ _ _ _

 (4.3) f 't (x) -- 2 f t(h)

 Since (x-x') 2?ex, and x > h, so (x-x') >,eh. Using this in (4.3),

 -4- [-/f'(h)](x - X)2 2[-f''(h)]he(x -x')
 (4_4_ 2 >, _ 2

 f (x) f '(h)

 6 This is a value loss at current prices relative to the value of input.
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 228 T. MITRA AND I. ZILCHA

 Using (4.4) in (4.2), together with (F.5-) yields (4.1). This proves the Lemma.

 THEOREM 4.1. Under (F.1), (F.2), (F.5-), (U.1)-(U.4), a feasible program

 <x*, y*, c*> from x>O, is optimal if there is a price sequence <p*>, with
 p*> Ofor t>0, such that

 (4.5) u,(c*) - p*ct* > u(c) - p*c for c > 0, t > I
 (4.6) P*Y*+I - p"*x* > > Pl+Y - pp*x for x 2 0, y =ft(x) and t 2 0
 (4.7) sup p*x* < oo.

 t_0

 PROOF. If <x*, y*, c*> satisfies (4.5), (4.6), then it is regular interior, and an

 Euler program. Also, for t ?0, p* >0, and p*+ I= [p*/f (x*)].
 Suppose, now, that <x*, y*, c*> is not an optimal program from x. Then,

 there is a feasible program <x, y, c> from x, a subsequence of periods, ts, and
 a real number n >0, such that for all ts, we have

 ts

 (4.8) [ut(ct) - ut(c*)] > n. t=1

 Denote (p$*y*-p* 1x* )-(pt*yt-p*-X1t-1) by 6t, for t>1. Then, using (4.5),
 we have, for t > 1,

 (4.9) [ut(ct) - ut(ct*)] ? (pt*..Xt1 - ptXt) - (p*-1xt*- - pt*x*) - t.

 To see this, use (4.5), for t2 1 to get

 [t(ct) - ut(ct*)] ? p*ct - p*c* = (Pt*Yt - P*xt) - (ptyt - Pt t)

 - (PtYt - P*t-1X1t-1) + (Pt-1Xt- - P*Xtt)

 - (pt*y - pt*x*) - (Pt1xt-1 - pt*xt*)

 -(Pt-Xt-1 - ptXt) - (Pt-xtx - ptxt)- -t

 Since 6_>0 for t2 1, by (4.6), so for all tS, we have:

 ts

 (4.10) [ut(ct) - ut(ct*)] ? Pt*S(xts -xt) t=l

 Using (4.8) and (4.10), we have

 (4.11) P*(x*-xt) > n for t=ts.

 By (4.7), there is V< oo, such that, p*x* < Vfor t>0. Hence, for t= t, we have,
 using, (4.11)

 (4.12) (x* - xt) 2 (n/p*) = (nx*/p*x*) (n/V)xt*.

 Using (4.12) in Lemma 4.1, we have, for t=tS,

 (4.13) ft(x*) -ft(xt) -(xt*-xt) 2 Q (Xt* - x)
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 OPTIMAL ECONOMIC GROWTH 229

 Multiplying through by pr in (4.13), and using (4.11), we have, for t =t"

 (4.14) [pt*+ft(xt*) - Pt*+f(xt)] - pt*(xt* - X) ? 2 Q(V)

 Recalling the definition of bt, we have for t= t=,

 (4.15) bt+l 2 2 QV)

 Denote (1/2)Q(n2/V) by 3. Then, bt+,?O for tot,, and bt+,?b for t=t,.
 Using this in (4.9), we have

 ts

 (4.16) S [ut(ct) - ut(ct)] < pt*(xt*s - xt)- (s -)b .
 t=l

 Now, for t ?0, p*(x* - xt) < p*x* < V. So, using this in (4.16), together with
 (4.8), implies that, for s > l,

 (4.17) n < V- (s - 1)3.

 For large s, the right-hand side of (4.17) is negative. This contradiction proves

 <x*, y*, c*> is optimal.
 For the necessity part of our characterization result, we need a stronger version

 of (F.5):7

 (F.5+) For t>0, ft is twice differentiable for x >0; also, there are positive num-
 bers, q, 4, Q, Q, such that for t20, and x>0,

 q ? [ft(x)xlft(x)] < (1 - 4); Q ? [-f"'(x)]x/f (x) < Q.
 Also, we assume uniform bounds on the utility functions :8

 (U.5) There is 0<K<oo, such that, for t21, c?0,

 - K < ut(c) <!~ K.

 (F.5+) is used to obtain the following useful result.

 LEMMA 4.2. Under (F.1), (F.2), (F.5+), if a feasible program <x, y, c> from
 x>O, is regular interior and efficient, then

 (4.18) lim sup (Ct/Yt) > 0.
 t -+ 0

 PROOF. Suppose, on the contrary, that <x, y, c> is an efficient regular interior
 program, but (ctlyt)->0 as t- oo then, there is T<oo, such that for t2 T, (ct/yt)
 <(1/2)q . Then for t>T,

 I The precise strengthening of (F.5) is in the inequality [f (x)xlf,(x)]< 1 -i. Under (F.1)-
 (F.4) we have [f'(x)x/f,(x)]<:!1 and (F.5+) strengthens this particular relationship. This as-
 sumption was used by Weizsacker [1965] to prove existence of an optimal program under chang-
 ing technology.

 8 This assumption has been exploited by Gale and Sutherland [1968] to establish the existence
 of an optimal program in a "strongly productive" economy without technical change.
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 230 T. MITRA AND I. ZILCHA

 rt+lxt+i = rt+ (yt+ I ct+1) = rt+ yt+ 1[1 -(ct Iyt+ 1)]

 > rt+ly,t+l I - 2 4) = (rt+lyt+l/rtxt) 1- 2 i)rtxt

 = [ft(xt)/lf(xt)xt] - j i)rtxt

 > rtxt(i - q)/(I - ) = rtxt {I + ? /(l - q)j}

 Denote [(1/2)q/(1-q)] by a. Then a>O, and for t>T we have

 (4.19) rt +xt + ? rtxt(a + 1).

 (4.19) implies that Zt0= [lIrtxt] < oo.
 Consequently, by Lemma 3.1, <x, y, c> is inefficient. This contradiction

 establishes the Lemma.

 THEOREM 4.2. Under (F.1), (F.2), (F.5+), (U.1)-(U.5), if a feasible progr-am
 <x*, y*, c*> from x>O is optimal, then there is a price sequence <p*>, with
 p*>Ofor t2O, such that

 (4.20) ut(c*) - p*c* > ut(c) - p*c for c > 0, t > 1

 (4.21) P*+jY*+I - p*x* > P*+lY - p*x for x 2 0, y =ft(x) and t > 0
 (4.22) sup p*x* < oo.

 t>O

 PROOF. Since <x*, y*, c*> is optimal, it is weakly-maximal. Hence, by
 Theorem 3.1, there is a price sequence <p*>, with p* > 0 for t>0, such that (4.20)
 and (4.21) are satisfied. So, we only have to establish (4.22).

 Using c =(1/2)c* in (4.20), we have, for t> 1,

 ? up(c*) - ut( c*) < 2K

 using (U.5). So p*c*< ?4K for t> l.
 Since <x*, y*, c*> is optimal, it is efficient. Also, by (4.20), and (U.4), c*>0

 for t? 1, and so x* >0 for t20. Hence <x*, y*, c*> is regular interior. So, by
 Lemma 4.2, there is a subsequence of periods, t,, and a real number, m, such that,
 for t=tS, (c*/y*)>2m. Using the fact that p*c*<4K for t>1, we have p*y*
 ?(4K/m) for t = t. Since x* < y* for t2 1, so

 (4.23) p*x* <(4K/m) for I = ts.

 We note, next, that,

 (4.24) if p*+1x*+I < p*x*, then [p*jc *>lp *ly*1]2
 This may be seen as follows.
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 OPTIMAL ECONOMIC GROWTH 231

 [Pt*+lct*+ lPt*+lYt*+ ] I -[t lpt*+ l/t*+ lYt**+ l]

 > 1 - [p*x*/p*+1y*+1] (since p*+1x*+I < p*x*)
 - I - [ft(x*)x*/ft(x*)] 2 1 - (1 - r) > i.

 Now, suppose (4.22) is violated. Then there is a subsequence of periods, t,
 for which

 (4.25) *x* > oo as r - oo.

 Denote (8K/m) by k. Now, we construct a subsequence t. as follows: t=1,
 tl+ I=min It: v*>v* +k, and v*1 ?v*<}. In order that the subsequence is well
 defined we have to show that, for each t,, the set

 A(tu) = {t: v* > v*' + k and v*1 < v*}
 is nonempty. Let B(t) =I{t: v* > v* + k}. Then, by (4.25), B(tj) is nonempty.
 If there is no element in B(tu) for which v* 1 < v*, then for each element in B(tu),
 v*1 >v*. This implies that if t eB(tu), (t+l) eB(t") also. Since B(tu) is non-
 empty, there is some element r in B(tu). But then (-r + 1), (-r + 2),... are all in
 B(tu). This means that

 (4.26) v* > v* + k > k for t > r.

 (4.26) violates (4.23). Hence, there is some element in B(tu) with v*+1 <v*.
 Thus, A(tu) is nonempty, for each t,,.

 For the subsequence, t,, we have

 v* --> 0 as t 00, (4.27) { a
 v*+ < V*U for all t,.

 Then, there is T, such that v* +< v*, and

 (4.28) V* > 8K/I.

 Choose 2, such that (1-A)=(q/2). By (F.5+), 0<A<1. Define x=Ax4, y=
 fT(x), x' =X +1, and c=y- x'. Then c =fT(X4) -x+I> AfT(x4) -A+I =),yT1

 -X -T+1[-X /T+1]=YT+1 (-)+1XT T 1/YT + ) T +(T +I1
 YT4+ 1)-(1-X)] . Since vT1v<VT, so by using (4.24), (cT +1/yT+1)>q. Hence,
 cy? +I[q-(1-A)]= y+I1/2?0.

 Now, using (4.20) and (4.21),

 UT+ 1(CT+ 1) -U+ 1(c) > PT+ 1CT+1 - PT+ 1C = [PT+ 1YT+ - PT+ 1XT+ I]

 - [PT+1Y - PT+1x']= [PT+1YT+1 - PTXT] + [PT*xT PT-+1XT+ 1

 - [PT+1Y - PTx] [PT*x - PT+1x'] ? [pTXT- PT+1xT+]

 [pTx - pT+1x']= pTXT - p*AX* (since x = Ax*, x = x'+1)
 P-TXp(t A) = p*x(4/2).
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 Now, using (U.5), we have

 (4.29) 2K ? UT+ l(CT+1) - UT+ 1(C) ? p*x(7jI2).

 (4.28) and (4.29) yield 2K ? (8K/q) (q/2) = 4K, a contradiction, since K >O.
 Hence (4.25) cannot hold, and so (4.22) must hold. This completes the proof of

 the theorem.

 REMARKS. (i) A multisectoral version of Theorem 4.1 is presented in

 McKenzie [1974], by assuming a result analogous to Lemma 4.1. In an aggre-
 gative model without changing tastes or technology, results similar to Theorem

 4.1 and Theorem 4.2 appear in Peleg [1972].

 (ii) Notice that in proving Theorem 4.2, we have not made use of the fact that

 <x*, y*, c*> is optimal, but only of the fact that <x*, y*, c*> is weakly-maximal.
 Thus, Theorem 4.2 shows that a weakly-maximal program satisfies (4.20), (4.21)

 and (4.22). But, then, by Theorem 4.1, such a program is also optimal. Hence,
 under the assumptions used to prove Theorem 4.2, the concepts of weak-maxi-

 mality and optimality coincide. This demonstrates the strength of the bounded
 utility assumption (U.5). It would be useful to have a set of assumptions under

 which the results of Theorems 4.1 and 4.2 hold, but under which the concepts

 of weak-maximality and optimality do not coincide. This remians an open
 question.

 5. ASYMPTOTIC STABILITY PROPERTIES OF WEAKLY-MAXIMAL AND

 OPTIMAL PROGRAMS

 In this section, we will consider a fixed closed interval [a*, b*], where O<a*
 < b* < oo, in which the initial input level, x, can lie.

 We will show that weakly maximal programs from initial input levels in [a*,
 b*] converge to each other, in terms of a certain distance function. The choice

 of the distance function implies that weakly maximal programs have a "relative
 stability property".

 We will also show that the value (evaluated at the competitive prices of any

 optimal program) of the difference in the optimal input levels between any two
 optimal programs (from initial input levels in [a*, b*]) converges to zero.

 We start with a comparative-dynamic property, which says that a weakly-
 maximal program from a higher initial input level, has higher input and con-
 sumption levels, for all time periods, compared to those of a weakly-maximal
 program from a lower initial input level.

 LEMMA 5.1. Under (F.1)-(F.4), (U.1)-(U.4), if <x, y, c> is a weakly-maximal
 program from x e [a*, b*], and <x', y', c'> is a weakly-maximal program

 from x'e [a*, b*], and x> x', then

 (5.1) x txt for t?O

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 17:34:29 UTC
All use subject to https://about.jstor.org/terms



 OPTIMAL ECONOMIC GROWTH 233

 (5.2) Ct 2 Cc for t > 1.

 PROOF. The proof is similar to Brock's [1971] result where the terininal

 stocks differ. We will first prove (5.1). Suppose this is not true. Let T be the

 first period for which XT<XT. Then, x 2x for t-O,..., T-I.
 From the proof of Theorem 3.1, we know that <x, y, c> and <x', y', c'> are

 both regular interior and Euler programs. Hence, we have, for t> 1

 Ut(c) = f(xt)ut + l(Ct + 1
 (5.3)

 Ut(Ct) = ft(xt)ut + I(Ct + 1).

 Since x< x'T, and XT-IX~l x so CT>C-T. Hence U'T(CT)?U (C'T), and f'T(XT)
 ?f'T(x). So, by (5.3), u++1(cT+1)?uI+1(c'+1), anid so CT?l?CT+l This
 means, using (F.2),

 (5.4) fT(XT) - XT+1 fT(XT) - XT+ 1 > fT(XT) -XT+ 1

 From (5.4), XT+ >XT+1. Hence, the step may be repeated to get for t? T,
 ct>Ct. But XT<X'T, so <x', y', c'> cannot be a weakly-maximal program. This
 contradiction proves (5.1).

 Next, we will prove (5.2). Suppose (5.2) is violated. Let T be the first period

 for which CCT<CT. ence, UT(CT)2U'(c'T). Also, using (5.1), (which we have
 already proved) f'(xT)<f'(x'). Hence, using (5.3), U'T +(CT+ 1) > U'T + CT( + ),
 so that CT+l?C'+l. Thus, the step can be repeated to get, for t?T+1, ct<ct.
 But, CT<CT, while XT ? XT-. Hence, <x, y, c> cannot be a weakly maximal
 program. This contradiction establishes (5.2).

 Before proceeding further, we introduce some notation. For x, x' >0 , we write
 e(x, x')=min(x, x'); E(x, x')=max(x, x'). Also, for x, x'>0, we define a
 (relative) distance function

 (5.5) d(x, x') = Ix - x'lIe(x, x').

 Finally, given 3>0, we denote [6/(t + 3)] by s.

 LEMMA 5.2. Under (F.1), (F.2), (F.51), given 3>0, we have for all x, x'>O,
 and t>O,

 (5.6) d(x, x') ? 6 implies ft[e(x, X,)] > (1 + eQ)
 f'[E(x, x')]-

 PROOF. Since d(x, x') >0, there are just two possibilities to consider (i) x > x',
 (ii) x'> x. We consider only case (i), since case (ii) then follows symmetrically.
 Under case (i), we have to show that

 (5.7) (x/x') ? (1 + 6) implies f(x') ?(1 + Q
 ft(x

 Using the mean value theorem, we have f'(x')-f'(x) =f"(h)(x'-x), where
 x'<h<x. Hence,
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 (5.8) ft(x') =f(x){1 + [-f "(h)] (x - x') }
 f t(x)

 We know that x 2 (1 + )x', so that x + bx 2 (1 + )x'+ bx; that is, x 2 x' + ex, or

 (x-x')?ex. Since h<x, so (x-x')?eh. Also, since h<x, so f'(x)<f'(h).
 Using these facts in (5.8), we have, by (F.5-),

 (5.9) f(X') ? f (x) {1 + Pt[ - f"(h)]h } ft(x) [1 + eQ]C

 (5.7) follows by using (5.9).
 For our main result, we will assume

 (E) There exists a weakly-maximal program from every x E [a*, b*].
 Let <x*, y*, c*> be a weakly-maximal program from a*, anid <x5, y> be a weakly-
 maximal program from b*. Given any 3>0, we write

 R(6) = LI + log 1[(c1 + )Q/z4G)] j.

 THEOREM 5.1. Under (E), (F.1), (F.2), (F.5-), (U.1)-(U.4), given 3>0, if
 <x, y, c> and <x', y', c'> are weakly-maximal programs from x, x' in [a*, b*],
 then

 (5.10) d(xt, x') ? 3

 can hold for at most R(6) periods.

 PROOF. Consider weakly-maximal programs <x*, y*, c*> and <x, y, c> from
 a* and b* respectively. From the proof of Theorem 3.1, both programs are

 regular interior, and Euler programs. Hence, for t> 1,

 ut (ct*) - u+' (c t*+ 1t(xt*)
 (5.11)

 ut(ct) =ut+ #t+ Or (5-t)

 Using (5.11), we get for T?2,

 T-1

 H C) I f t (x t )UT (cT*)

 (5.12) u (c ) T- =1
 U1 C1 I1: f t(X t) UT (CT)

 t=l

 Since a* < b*, so C*<CT by Lemma 5.1, that is, UT(CT)?llT(CT). Hence, from
 (5.12),

 T7 I

 H( f 't(xt*)
 (5.13) u'l (c,) > t=1

 '(j- T-
 t=1

 Since a*<b*, so X* < -t by Lemma 5.1, that is, f(xt*!)f (5-t) for t?1.

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 17:34:29 UTC
All use subject to https://about.jstor.org/terms



 OPTIMAL ECONOMIC GROWTH 235

 Consider the set A={t ? 1: d(x*, 5-tS)?3}. For each t, in A, we have, by
 Lemma 5.2,

 (5.14) f(x,) l+ eQ for t = ts.

 Let R be the number of elements in A, which do not exceed (T- 1). Then,

 from (5.13) and (5.14), we have

 (5.15) ui(c') > (1 + gQ)R.

 Hence, R log (1 + ?Q) < log [u (c*)/u (c 1)]. That is,

 (5.16) R ? log [u'(cO)u'j(~01)
 log (1 +8Q)

 Since (5.13) is true for an arbitrary T, A has at most [R(b) - 1] elements. This

 means that d(x*, xt) ?6 can occur for at most R(b) periods [by including the
 period zero].

 Now, consider weakly-maximal programs <x, y, c> and <x', y', c'> from x,
 x' which both belong to [a*, b*], but are otherwise arbitrary. Then x* < xt t,
 and x*?<x? xt for t21, by Lemma 5.1. Thus d(xt, x)<d(x'*, t) for t>0.
 Hence d(xt, x') ?2 can occur for at most R(b) periods.

 COROLLARY 5.1. Under (F.1), (F.2), (F.5-), (U.1)-(U.4), if <x, y, c> and
 <x', y', c'> are weakly-maximal programs from x, x' in [a*, b*], then

 (5.17) lim (x/xt) = 1.

 PROOF. The result follows immediately from Theorem 5.1, and the definition
 of the distance function.

 THEOREM 5.2. Under (F.1), (F.2), (F.5+), (U.A)-(U.5), if <x*, y*, c*> and
 <x, y, c> are optimal programs from x*, x>O, with competitive prices <p*>
 and <p> respectively then,

 (5.18) limpt(xt - x*) - limpt*(xt - x*) = 0.
 t-.*oo t-.*oo

 REMARK. Note that boundedness of Pt or xt is not implied; only capital values
 are bounded by Theorem 4.2.

 PROOF. Without loss of generality, suppose x<x*. Then, by Lemma 5.1,

 xt ?x'* for t ?0, and ct < C* for t ?1. Denote [ut(ct) - ptct] - [ut(c*) - ptc*] by at
 for t21; (ptyt-pt-lxt-,)-(pty*-pt-lx* l) by vt for t21. Then, for T21,
 we have
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 T
 ST = Z [Iu(Ct*) - Ut(Ct)]

 t=1

 T T T
 = [ut(ct*) - Ptct*- [ut(ct) - PtCt] + [Pt(ct* - ct)]
 t=1 t=l t=l

 T T T
 = Z [ut(ct*) - ptct*] - [ut(ct) - Ptct] + LPtYt*- PtXt*]
 t=1 t=1 t=1

 T T T
 - L [PtYt - PtXt] = [ut(ct*) - ptct*] - [ut(ct) - Ptct]
 t=1 t=l t=1
 T T

 + E [PtYt* - -EZ [PtYt - Pt-1Xt -] + pox
 t=1 t=1

 POXY P7X1 + PTXT.

 Hence, for T2 1,

 T T
 (5.19) ST = PO(- X) + PT(XT -X) - t E Vt.

 t=1 t=1

 Since at, v> ?0 by the competitive conditions, and XT <X for T > 1, SO

 (5.20) ST < p0(x*-x)?po x*.
 Also, c* > ct for 1?1, so ST is a monotonically nondecreasing sequence. Hence
 ST converges as T-* o0. Similarly, using (5.19), we have, for T> 1,

 T T

 (5.21) E at < pox*, E vt < pox*.
 t=1 t=1

 Since ET=1 at is monotonically nondecreasing in T, and so is E t=, so t=
 is convergent, and so is vt=, Vt. Thus, using (5.19) again, we know that PT(XT
 -4T) is convergent as T-* o0.

 Let e=limT P T(XT-XT) Since <x, y, c> is optimal, so XT>O for Tt 1,
 and we can write, for T ?1,

 (5.22) PT(XT - XT) = PTXT[1 - (XT/XT)].

 By Theorem 4.2, SUPT>0 PTXT< Oo. And, by Corollary 5.1, [1 -(XTXT)]-*O as
 T-+oo. Hence taking limits in (5.22), e=0.

 The fact that limT pT(xT -XT)= 0 can be proved in the same way. This
 establishes the Theorem.

 REMARKS. (i) Theorem 5.1 is a generalization of Theorem 3 in Mitra [1979],
 where a stationary technology was used, with a particular type of social welfare
 objective (involving a stationary utility function, but variable discount factors).
 (ii) Brock and Gale [1969] show in an aggregative framework like ours, the
 stability of the growth rate (defined in a particular way) along an optimal pro-

 gram. The case treated by Brock and Gale is f,(x) =AAtf((B/A)tx) where A and
 B are the usual coefficients of labor and capital augmenting technical progress.
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 The social welfare objective involves a stationary utility function and a constant

 discount factor. Asymptotic exponent conditions on the production and utility

 functions are used to obtain their stability result. Our nonstationary model is

 more general, but we make some uniformity assumptions to obtain our stability

 results. (iii) McKenzie [1976] proves a stability result in a multisectoral model

 which involves in its distance function, the absolute differences between input

 levels along different optimal programs. For his result, certain uniform concavity

 and reachability conditions are assumed; however, the reachability actually used

 in the proofs is quite weak and the uniform concavity for bounded paths is a

 reasonable assumption. In our approach the boundedness of x, is not required
 and the concavity assumption is relative to xt, and, of course, the turnpike result

 is also relative to xt. This is a new type of turnpike theorem for the Ramsey type
 model.9

 State University of New York at Stony Brook, U. S. A.

 Tel-Aviv University, Israel

 9 We owe these observations to our referee.
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